- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Jin (2)
-
Lv, Chaojia (2)
-
Chen, Jiuhua (1)
-
Fu, Suyu (1)
-
Ho, Kaiming (1)
-
Hu, Qingyang (1)
-
Lin, Jungfu (1)
-
Liu, Yijin (1)
-
Mao, Ho-Kwang (1)
-
Mao, Wendy L (1)
-
Prakapenka, Vitali B. (1)
-
Su, Xiaowan (1)
-
Sun, Yang (1)
-
Tang, Ruilian (1)
-
Wang, Caizhuang (1)
-
Wang, Chenxu (1)
-
Wentzcovitch, Renata M. (1)
-
Zhang, Feng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Liu, Jin; Wang, Chenxu; Lv, Chaojia; Su, Xiaowan; Liu, Yijin; Tang, Ruilian; Chen, Jiuhua; Hu, Qingyang; Mao, Ho-Kwang; Mao, Wendy L (, National Science Review)Abstract As the reaction product of subducted water and the iron core, FeO2 with more oxygen than hematite (Fe2O3) has been recently recognized as an important component in the D” layer just above the Earth's core-mantle boundary. Here, we report a new oxygen-excess phase (Mg, Fe)2O3+δ (0 < δ < 1, denoted as “OE-phase”). It forms at pressures greater than 40gigapascals when (Mg, Fe)-bearing hydrous materials are heated over 1,500 kelvin. The OE-phase is fully recoverable to ambient conditions for ex-situ investigation using transmission electron microscopy, which indicates that the OE-phase contains ferric iron (Fe3+) as in Fe2O3 but holds excess oxygen through interactions between oxygen atoms. The new OE-phase provides strong evidence that H2O has extraordinary oxidation power at high pressure. Unlike the formation of pyrite-type FeO2Hx which usually requires saturated water, the OE-phase can be formed with under-saturated water at mid-mantle conditions, and is expected to be more ubiquitous at depths greater than 1,000 km in Earth's mantle. The emergence of oxygen-excess reservoirs out of primordial and subducted (Mg, Fe)-bearing hydrous materials may revise our view on the deep-mantle redox chemistry.more » « less
An official website of the United States government
